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ON-LINE TUNING OF MULTIVARIABLE PI CONTROLLERS USING

PRINCIPAL COMPONENT ANALYSIS: PRELIMINARY RESULTS

by

B.C. Moore*

ABSTRACT

There has been considerable interest lately in the application of singular

value analysis in systems theory. The basic ideas, however, were developed in

statistics (Hotelling introduced principal component analysis in 1933) and are

currently used in numerical analysis and digital filtering. The fundamental

results underlying principal co mponent analysis are presented in this paper,

and these results are applied to the problem of tuning multivariable propor-

tional plus integral controllers. Although the tuning method proposed is pre-

liminary, it is designed to avoid possible traps which would prevent

"tight" tuning with conventional tuning of individual loops. When applied to

non-interacting loops, the method reduces to conventional tuning of the loops

simultaneously.
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I. INTRODUCTION

Although there has been considerable interest lately in the application

of singular value analysis in systems theory, [l]-[9], the basic analysis

techniques involved are at least 46 years old. Hotelling [10], [11], intro-

duced principal component analysis in 1933, and the effectivenss of these tech-

niques was enhanced substantially by the development of an algorithm (S.V.D.),

[12], for efficient, accurate computation of the important objects. These

techniques are currently used in the numerical analysis [13]-[15], and digital

filtering [16]-[18]. Dempster [19] gives an excellent geometric treatment of

principal component analysis as well as an overview of its history and relation-

ship to least squares approximation.

In this paper the fundamental results underlying these analysis tools are

presented (Section II), and a preliminary method (using these tools) for on-line

tuning of multivariable proportional-plus-integral controllers is proposed

(Sections III, IV). When the method is applied to a set of non-interacting loops,

it reduces to a standard classical technique ([20], page 330).

Although the point will not be pursued here, linearity does not play an

essential role in principal component analysis. Preliminary ideas on the applica-

tion of these tools to nonlinear problems are given in [21].

Notation: IR, 4 will represent the fields of real and complex numbers. For a

vector v and natrix M, v TM represent the transpose, v ,M represent the complex

conjugate and vH,M' represent the conjugate transpose.



II. FUNDAMENTAL RESULTS

The results given in this section form the foundation for the principal

component analysis techniques to be discussed in later sections. The two

propositions given below may be viewed as one result stated in two different

contexts: the first involving discrete data samples; the second, continuous

data. The constant K plays no role other than an aid for discussion.

Discrete Data:

For convenience the samples are organized into a sequence of vectors

y(l),y(2),...,y(N) in qn, with

N

2 H
W2 K I y(t)y ( ). (K>O)

This matrix is positive semidefinite with a set of non-negative eigenvalues

2 2 2

and corresponding mutually orthogonal unit eigenvectors u,u,...,u

Proposition IA:

Let the scalar sequence yi(l),Yi(2),...,yi(N) be defined by

yi() = uly(t)

n

for 1 < i < n. Then Y(t) = uiyi(t), where
i=l1



}11'
( N) 1/2

-K IyiC()I =

Proof: The first identity follows from the fact that U=(uU 2,.. .,Un) is unitary.

Furthermore

N N H
K IlyI I u.y(-)y(Z)U u .Wu

=1= 2 i 1

and the second identity follows trivially. 0

Stated in other words, Proposition 1h says that we can decompose the vector

sequence into the vector sum of spacially orthogonal sequences (called components)

ordered with respect to magnitude.

The important objects in Proposition 1A are the pairs (aisui), i=l,...,n,

and these can be computed without first computing W2 , If a data matrix Y is

constructed with N columns consisting of the vectors y(l),y(2),. ..,y(N), then

W2 = yyH

and (ai,ui), 1:i5n, are the singular values and left singular vectors of Y. These

may be computed directly using the well known algorithm (S.V.D.) developed by

Golub and Reinsch [12] (see also [9]).

,1d
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Continuous Data:

Now consider a piecewise continuous map f:4,*Cn defined by y=ffx), and let

'2
= K I f(x)I (x)dx (K>O)

1

with eigenvalues a2 a a2  2 a 2 0 and mutually orthogonal unit eigenvectors
1 2 n

UlU 2 ...,u n.

Proposition IB:

H
Let fi:f -4 be defined by fi(x)=uif(x). Then

n
f(x)= [ uif i (x)i=l11

where

t J'2 if (x)I2 dx} 1/

Proof: Similar to the proof of Propos>.4on IA. 0

Here we decompose the vector valued function into the sum of spacially ortho-

gonal component functions ordered with respect to magnitude. The same computational

tool, S.V.D., can be used to compute (Cipui) without actually computing W 2 . To

do this, divide [xl,x 2] into N evenly spaced sample points and construct a data

matrix Y whose columns are the samples. For N large, rectangular approximation

of the integral gives



( x2 f (x)f?(x) dx z(I /N) y

To compute (ai,ui), lisn, one may apply S.V.D. to the scaled data matrix

(K/N) 112Y

A Combined Result for Linear Systems

With linear systems, we shall often encounter a matrix F(x) which can be

viewed as a set of maps fl(x),f 2 (x),...,f m(x), one corresponding to each column

of F. In this situation it is appropriate to combine Propositions IA, lB. Let

W = 1:2 f (x)CfHx)dx = K 2 F(x) FH(x)dx.
x 1x

sets for W2, and

A H

Fi(x) = uiF(x)

then

n H
F(x)= uiFi (x)

i=l

where

K : 11Fi ( x) 112dx = Oi

x I



To compute (ai,ui) in this situation, divide [x1 ,x2] into N evenly spaced

sample points SS2, ...,sN and let

Y = (F(s1) F(s2) ... F(SN)).

If there are m columns in F and N sample points, then Y has mN columns.

Remarks about Perturbations:

Suppose the matrix F(x) is perturbed to give FA(x)=F(x)+AF(x). Then

uF (x) = Fi(x) + HAF(x)

and it follows that

( 21 IFpx HF(x2dt1/2 (5 fx2 1 112 d /2II i x)-u iF Wx 11 dt s 2II AF x) l[2dxJ
1x

where the equality is achieved if AF(x) is aligned with u.

This is a double edged sword. First, it gives a tool for coping with structural

instability associated with many theoretical results. Theory says, for example,

that if every column of F(x) is contained in a proper subspace S for all xc[xlx2],

then we may project onto S to simplify the situation (by reducing dimensionality).

Such a subspace S may, however, be structurally unstable: there may exist arbitrarily

small admissable perturbations such that the columns of F(x)+AF(x) are not contained

in a proper subspace. We are guaranteed, however, that FA(x) will have weak components

(assuming small perturbations) and that the strong components will define a subspace

which is close to S.
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The other edge of the sword gives us help in deciding roughly how accurate

we can expect the components to be. If for example, there are components whose

magnitudes are of the same order as the instrumentation precision, then they

may be in error by -100% and one can hardly use them (say for feedback) with

confidence.

General Comments about Applications:

The results of this section provide a strong tool for spacial analysis

(possibly on-line in many situations) of multivariable signals in the time or

frequency domains.

If, for example, f(t) is a vector of signals and

W K f(t) fT(t)dt
t1

then Proposition 1B gives a decomposition into components ordered with respect

to their energy (K=I) or average power (K=ttJ

K Jt2 f (t)dt 
1/2=

t1

For a vector f(jw) in the frequency domain, and

W2 = 1w2 f(jw)fK(jw)dw,
w1

one gets information about the spacial distribution of f(jw) over the frequency

band [w1 ,w2].

j



Remarks about Computation:

Although one might be alarmed at the thought of using a minicomputer to

compute the singular values and left singular vectors of a matrix Y with, say,

10 rows and 100 columns, it is quite reasonable. 3ne can recursively (treating

one column of data at a time) reduce Y to a unitarily equivalent matrix (see [14],

p. 383)

A
Y =YQ (Q unitary)

where Y is 10lO; this process requires 100(10 2)=10,000 operations. Singular

A 3
value decomposition of Y requires t6(10 )=6000 operations, giving a total of

operation count of -16,000.

At first it may seem simpler to find the components by computing the eigen-

values and eigenvectors of yyH. Experts recommend that this be avoided (by

using S.V.D.) for the following reason (see [14], p. 382 for more discussion):

This method doubles the demand for internal computer resolution associated with

the algorithm.

Specifically, suppose one has invested money in 12 bit A-D converters and has

interfaced these properly so that there is 12 bit resolution associated with the

data. To get this same resolution on the span [0,a1]; that is, to have

CF 2-2 c {computed value of ai} ai + 2-120

requires at least 12 bit internal resolution using S.V.D., and at least 24 bit

internal resolution using the "squared up" version where yyH is computed.



Stated in other words, possibly more to the point with current minicomputer

hardware organization, it is highly probable (work needs to be done here) that

one can get 12 bit resolution with 12 bit A-D converters and 16 bit operations

if S.V.D. is used. It is impossible to do so with the other algorithm; one

would probably need to carry out the computations using 32 bit arithmetic.

kz
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III. MULTIVARIABLE PI CONTROL

Consider the following PI (Propcrtional+Integral) control loop which is

assumed to be open loop stable:

r y

With a single isolated loop such as this, one can often follow a simple

procedure to adjust the gains k, k; i.e. to "tune" the control loop. One

classical method (see [20], P. 330) is the following:

-with k=O increase k (this improves response speed) until the step response

is highly oscillatory. Reduce k by a factor of 2.
p

*increase k I (this reduces offset) until the step response is highly oscillatory.

Reduce k by a factor of 2.
I-

With multiple interacting P1 control loops, there are inherent "traps" asso-

ciated with extending simple procedures such as this. To bring some of these

problems into closer view, consider the system shown below

rt)e(t) 
+



where K KI are diagonal matrices of proportional and integral gains, respectively.

Let's assume that each variable is scaled so that one unit corresponds to a fixed

percentage of "full swing" and that we are free to sample e(t), the error vector.

Let E(t) be the matrix made up of error responses to unit steps; i.e. the
th th
i column of E(t) is the error response to a unit step applied to the i reference

input. For a linear system, the response to an arbitrary vector of steps

r(t) = r 6(t)

is given by

e(t) = E(t)r.

The steady state error (assuming stability) is

e =E r
ss ss

Awhere E = limit E(t).ss

A major trap follows from the fact that an operator sees only projections

of the vector e(t) on the basis vectors of a fixed coordinate system associated

with the physical arrangement of hardware (sensors). It is possible for rather

simple mechanisms to appear complicated in this fixed coordinate system. The

following paragraphs show that simple mechanisms involving the notions of

settling time, oscillations, and steady state errors may be confusing when

viewed through projections.

4 ____ ______ _Ink=_



Settling Time:

Let T(t) E(t) - Ess be the transient response map so that

e(t) - etr(t) + ess

where

et(t) = T(t)rtr

It is certainly p'ossible for the response to have one sluggish component which

projects significantly onto each coordinate; i.e. all loops appear sluggish.

loop 2 error

direction of sluggish component
~J-Cerror decays slowly)

loop 1 error

Actually for a system with n loops, one can define n settling times as

follows: Let

W2 (t) = T(T)TT(,t)d

with eigenvalue, eigenvector pairs (,2 u M ,)2 t2Ct),u Ct)).

Then



t minimum time such that ats) < C.

Note that t sl ;? t s2 t .. sn.

Further on in this section we shall propose one procedure for "tightening"

the response in the direction associated with sluggish components.

Steady State Errors:

2A T 2Consider W E E with eigenvalue, eigenvector pairs (a uCosierWs A ss ss (ssIUssl ..

2(a ssnu ssn ). It is entirely possible that there are only a few strong offset

error components which project onto every loop

loop 2

a55 Usl - principal offset error
component

/ loop I

shaded region ={Esr llrll l}

Oscillations:

To avoid unnecessary complications, let's assume that there is a single

lightly damped sinusoidal component observed in the loop error responses, and
2w/w

that the observed frequency is w. Let T a= T(t)dt and

W2 (2IT/wT
W = I (T(t)-T )(T(t)-T ) Tdt
tr 0av av

with cigenvalue, eigenvector pairs ()2 U2rUn
trl' )trl 'tin Utrn



Again it is possible that there is one strong oscillatory component which

projects onto a number of loops

loop 2 I

0 trlUtr1 -- corresponds to the principal
oscillatory component

loop 1

A tuning method which allows one to avoid these traps is given in the next

section.

jI



IV. A PRELIMINARY ON-LINE TUNING METHOD

These ideas are preliminary and essentially untested. Undoubtedly tests

currently in progress will lead to better tuning methods than the rather vague

one proposed in the Zollowin paragraphs. The tuning method is basically the

classical technique (given in Section III) applied to principal components. If

loops are noninteracting, the method reduces to the classical technique applied

to all loops simultaneously.

Part 1 Tightening the Response:

Let's assume that initially KI =O, and that the diagonal components of Kp are

increased (at the same rate, if you like) until there is a highly oscillatory

component. If the components of

T(.t) - T
av

have magnitudes atrl' . trn which are roughly equal, then this step is essentially

complete; reduce the gains by a factor of two Cto reduce the oscillationsl and

proceed to Part 2.

If there are some weak components, then increase gains in these directions.

Specifically, suppose atk >cYtrk+l ' and let

U 1  (u 1 u 2  ... Uk); U2 =(Uk+l . n).

Then in the proportional branch, we insert

M -M



where a,$ are tuning parameters with a=a=l initially. The parameter a should be

increased until oscillations appear in the lower branch; it may be necessary to

reduce a in the process to maintain stability; i.e. to keep upper branch oscillations

bounded.

This process

compute components of T(t)-Tav

*insert a Rotation-Tuning Gains-Rotation block

-adjust gains to get oscillations in weak branch

can be continued until the oscillations are "full" with no weak components. The

A
resulting gain matrix K in the proportional branch is the product of K and the

A
inserted blocks. The.elements of K should be reduced by a factor of 2 to reduce

oscillations. This completes Part 1.



Part 2 -- Inserting integral gain to reduce offset errors:

At this point it may be necessary to insert integral action if there is

A
significant offset. Here we shall use the components of Ess (with controller K).

If ok>>ask+l let

U = (Uss1 Uss 2  ..- Ussk); U2 = (Ussk+1 . Ussn)

and configure the controller in the following way:

with this configuration, a should be increased from zero until oscillations occur.

If the oscillations are "full" in the space corresponding to the integral branch,

reduce a by a factor of two and stop.

If the oscillations in the integral branch are not full, we may proceed as

follows iteratively until the oscillations are full.

*compute components of UI (T(t)T)Ul

* insert a Rotation-Tuning Gains-Rotation block (as in part 1) in the integral

branch

-adjust gains to increase oscillation in weak integral branch

We are one step away from completion of the proposed tuning algorithm, with

the following controller structure

j
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A
The last step is to reduce the elements of KI by a factor of two.

Concluding Remarks:

It is certainly possible in many process control problems to use a single

microprocessor system (<$10,000) for multivariable PI control of a small number

of loops (say 10). Process control systems of this type have been applied

successfully (see [22], [231) in the control of industrial heating and air

conditioning equipment (boilers, chillers, cooling towers, air handlers, etc.).

The tuning method proposed in this section can be implemented with little or no

additional hardware. The procedure is simple and consistent with classical

tuning methods. With a well designed man-machine interface (say bar graphs for

singular values and automatic generation of rotation blocks) the method would

probably be acceptable to plant operators.

| 1-
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ROBUST STABILITY OF LINEAR SYSTEMS - SOME

COMPUTATIONAL CONSIDERATIONS*

by

Alan J. Laub**

1. INTRODUCTION

In this paper we shall concentrate on some of the computational issues

which arise in studying the robust stability of linear systems. Insofar

as possible, we shall use notation consistent with Stein's paper [1] and

we shall make frequent reference to that work.

As we saw in El] a basic stability question for a linear time-invariant

system with transfer matrix G(s) is the following: given that a nominal

closed-loop feedback system is stable, does the feedback system remain

stable when subjected to perturbations and how large can those perturba-

tions be? It turned out, through invocation of the Nyquist Criterion,

that the size of the allowable perturbations was related to the "nearness

to singularity" of the return difference matrix I + G(jw). Closed-loop

stability was said to be "robust" if G could tolerate considerable

perturbation before I + G became singular.

Invited Paper presented at the Second Annual Workshop on the Informa-
tion Linkage between Applied Mathematics and Industry held at Naval
Postgraduate School, Monterey, California, Feb. 20-24, 1979; this
research was partially supported by NASA under grant NGL-22-009-124 and
the Department of Energy under grant ET-78-(01-3395).

**
Laboratory for Information and Decision Systems, Rm. 35-331, M.I.T.,
Cambridge, MA 02139.
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We shall now indulge in a modicum of abstraction and attempt to

formalize the notion of robustness. The definition will employ some

jargon from algebraic geometry and will be applicable to a variety of

situations. While no deep results from algebraic geometry need be em-

ployed, the exercise of formulating a precise definition is a useful one

for clarifying one's thinking.

Let p e IRN be a vector of parameters from some problem being studied

and suppose we are interested in some property R of this data. The vector

p may consist of the elements of various matrices, for example. If HI

is true at some nominal parameter set p0 we are frequently concerned with

whether 11 remains true in a "neighborhood" of p0 .

For example, p0 may be the elements (an, ... , al. , a22, .... ann)

of a nonsingular nxn matrix A0 and we are interested in the nonsingularity

of nearby matrices. We shall proceed to formalize the often-heard statement

that "almost all nxn matrices are nonsingular". First, the jargon:

Definition 1: A variety V = {p emN: @i(pl,..., = 0, i = 1..., k)

where Pi (xl,..., xN) eGR[xl,..., xN] are polynomials.

V is proper if V #IR N and nontrivial if V # .
N

Definition 2: A property is a function TI: 3R N {0, 11. The property

11 holds if IT , = 1 and fails if Fl(p) - 0.

Definition 3: If V is a proper variety, II is generic relative to V

provided 11(p) = 0 only if p e V. A property H is

generic if such a V exists.

Our discussion to this point is purely algebraic. Now let us intro-

N
duce a topology on3 m, say the topology induced by some vector norm I. Ij-
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Furthermore, let V be any nontrivial, proper variety. Then we have

the following topological definition.

Definition 4: The property n is well-posed at p e VC(the complement of

V) if IT also holds in a sufficiently small neighborhood

of p.

Lemma 1: The set S of points where a generic property is well-posed

is open and dense. Moreover, the Lebesgue measure of Sc

is zero.

The proof of Lemma 1 is routine and is omitted. It is easy to see

that a point p where a generic property holds is well-posed but that the

converse is not necessarily true.

We now have sufficient framework to make a formal definition of

robustness.

Definition 5: Given a point p with generic property H (generic with

respect to some proper variety V) well-posed at p, let

d = min 11p - v
veV

We say n is robust at p if d is "large".

The number d is frequently difficult to compute or estimate. When

it can be determined, it gives valuable information about how much

perturbation or uncertainty can be tolerated at p. For the situation

of special interest in this paper,Example 2 below, we shall see that

d can be explicitly calculated, at least theoretically. We now illustrate

the above concepts with two examples.
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Example 1

This example is chosen from Wonham [2] who uses the concepts of

genericity and well-posedness in nontrivial ways for a variety of control-

theoretic problems. In this trivial example, we seek solutions of the

system of linear equations

Ax b

where A e m (i.e., A is an mxn matrix with real coefficients) and b eIRm .

Our parameter vector is p where

T eN
p (al,..., a1  ... a b1 5 ... ,b )e , N =mn + m

T denotes transpose). n is the property of the equation having a solution

which is equivalent, of course, to the statements that b e Im A or

rk[A, b] - rk A. For example, if A = ( ) and b 1 then
(2 i4 bb 2)2b

H(1,2,2,4; b1 ,b 2 ) = 0 if b2  2b1

1 1 if b = 2b1

It is then easy to show the following: (see [2])

1. H is generic if and only if m < n.

2. 11 is well-posed at p if and only if rk A = m.

Example 2

This example is similar to Example 1 in the special case m n. We

are given a nonsingular matrix A 6 Rn xc and we are concerned with the

T
nearness of A to singularity. Identifying A with p = (ali,..., a n,

a 2 1 ,..., a nn) we define the property 11 by

-07 Mnn
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S0 if p rerresents a singular matrix
n(p) =

1 if p represents a nonsingular matrix

Then it is easy to see that fl is a generic property and well-posed where

it holds. This is the precise statement that "almost all nxn matrices

are nonsingular". Formally writing down the determinant of A as a poly-

nomial in all,..., ann defines the necessary variety V. It turns out,

in a theorem attributed by Kahan [31 to Gastinel, that the distance d

from a point p e Vc to V can be explicitly determined.

Theorem 1: A nonsingular matrix A differs from a singular matrix by no
1

more in norm than - i.e., given A,

1 = min{i1E II: A + E is singular}

Thus d = and we might say that A is robust with respect toI -A1 I
invertibility if d is "large". To avoid certain scaling difficulties,

it may be more desirable to work with a relative measure of distance,

drel1d e  defined by

drel d 1 1

1iA 11 1AIl IIA -1 K(A

The quantity K(A) is recognizable as the condition number of A with

respect to inversion. Of course, all the above quantities depend on the

particular matrix norm used. To exhibit the specific dependence on the

norm II q we shall append a subscript "q". For example,iq
t. -
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q

The minimizing E in Theorem 1 can be explicitly constructed for a number

of standard matrix norms. For example:

1. - (x (AT A)1/2 .

Let A have singular value decomposition A = USVT where U, V e mP

are orthogonal and S = diag{al..., a ). The .'s, C >"> 0 > 0,

are the singular values of A. The minimizing E is given by E = URVT

where R = diag{0,..., 0, -a }. Then

n
I11 = C I 11

and A + E is singular. The singular direction, i.e., a nonzero

vector z such that (A + E)z = 0, is given by the n - column of

V.

n

2. IIAIL = max { I Iaijl}, n {1,2,..., n)
ien j-l

n

Suppose A 1 = (c ii and 11 A71 11 = I a kj for k e n. Then the

j=l

minimizing E is a matrix all of whose elements are 0 except

for the k t column which consists of the elements

sgn kl -sgn a kn
IIA-111 . ..... A-'111 "

a )l
In fact, letting z sgn and u = 1iIAIL with the only

,1
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nonzero component of u being in the k th row, we have E - zu

and clearly IIEu = 1 Now, (I+EA-I)z -( u A - z)z " 0

since the k=! element of A-Iz is I kjl =  'll. so that uTA z 1.

j=l
Hence A + E = (I + EA-I)A is singular. Moreover, the singular direction is

'-1 -1
given by A z since (A+E)A z 0.

n

3. 1ll -=max {I la.j).
jen i=l 1)

The results for this norm are analogous to * II and can be derived

directly or by noticing that 1A Ill = 1 ATIL. For completeness we
n

note that if 11Ail I = l Cij for k e n and
i=l

T
then the minimizing E is given by E = -uz T

We shall see in Section 3 how the results in Example 2 can be applied

in studying robustness of stability of linear systems.

I
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2. THE LINEAR SYSTEMS SETTING

In this section we shall provide a brief introduction to both the

linear time-invariant systems setting and to the fundamental notion

of feedback. This will serve a two-fold purpose: first, to set the stage

for the basic stability results and second, to introduce the jargon and

notation, especially for non-engineers. This material is standard and

can be found in any of a number of standard textbooks on control systems.

We shall consider modelling physical systems by models which take

the form of a system of linear constant-coefficient ordinary differential

equations

*(t) - Ax(t) + Bu(t) (1)

y(c) -Cx(t) (2)

The vector x is an n-vector of states, u is an m-vector of inputs or

controls, and y is an r-vector of outputs or observed variables.

Starting from the initial condition x(O) the solution of (1) is

well-known to be

x(t) - etAx(O) + Je (t-T)ABu dT, t > 0 (3)

so that the output is given by

tAA
Y(t) _Cet x (0) + J e (tT) A(T)d, t > 0 (4)

where e is the matrix exponential defined, but not generally

computed, by

0 k~ k1
k-O



-9-

The matrix CetAB is called the impulse response matrix.

Denoting (one-sided) Laplace transforms by upper case letters, take

Laplace transforms in (4) to get

Y(s) = CX(s) = C(s I-A) - 1 x(0) + C(sI-A) -1BU(s) . (5)

The matrix G(s): - C(sI - A)- B is called the transfer matrix. Notice

that G(s) is the Laplace transform of the impulse response matrix.

As will be seen in the sequel, it is of interest to study the

response of the above linear system to sinusoidal inputs of the form

u(t) = e V, t > 0 (6)

where v is a constant m-vector, w is the frequency of the sinusoidal

input, and j = /T. The response of (1) to this input can then be

shown to be of the form

= etA 1 A)-Iej&t
x(t) a + (j- t > 0 (7)

where a is a constant n-vector depending on initial conditions. Now,

in the case where A is stable (i.e., its spectrum lies in the left-

tAhalf of the complex plane) the quantity e a goes to zero as t approaches

+ . The resulting output

y(t) = C(jWI - A)- iBve Jit (8)

is called the steady-state frequency response and the matrix

G(jw): - C(jWI - A)- IB (9)

which turns out to be the transfer function evaluated at s - jW, is

called the frequency response matrix
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Turning now to the case of a real signal given by

uk(t) = vksin(wt + Sk), t > 0 (10)

ui~t M 0, i = ,.,m; i # k,

we have steady-state frequency response of the kth output given by

y9(t) = IG k(j)Ivk sin(wt + k + kk)  (11)

where * = arg(G k(J W).

Aside from its obvious importance in the above analysis, the

frequency response matrix is important for two reasons:

1. Sinusoidal signals are readily available as test signals

for a linear system so G(jW) can be experimentally determined.

2. Various plots or graphs associated with G(jw) can be used to

analyze control systems, for example, with respect to stability.

Plots such as those associated with the names of Bode, Nichols,

and Nyquist are essentially different ways of graphically

representing IG k(jw)I and arg(G k(jw)) as functions of

W. These plots are used extensively in the analysis of

single-input single-output control systems where the robust-

ness of stability, e.g., the amount of gain and phase margin

available, is checked essentially visually. The appropriate

techniques in the multiple-input multiple-output case are

still being investigated and part of the motivation for the

research in E1] and this paper is directed towards this end.



Turning now to the notion of feedback whose essential idea is to

allow for stability of a system in the face of uncertainty (noise,

model error, etc.), the diagram below illustrates the basic (unity)

feedback control system:

e Y'
iG

Fig. 1. Basic Feedback Control System

Here u is a reference input, y is the output, and e = u - y is the error

or difference between the reference input and the output which we wish

to be,ideally, zero. The plant, compensators, actuators, and sensors

are all represented by G. There are much more elaborate and detailed

feedback structures than that described above and the structure can be

studied in a considerably more general function-space setting (see (41,

for example) than the simple linear causal time-invariant setting we

shall consider. However, the simple system is adequate to exhibit most

of the key ideas in this paper. Now, in this system we have

K e = u - y = u -Ge (12)

or,

(I+ G)e = u (13)

.. .._



-12-

The quantity I + G is called the return difference matrix. As in [11,

the matrix G(jW) then provides sufficient data, via the Nyquist criterion,

to test for stability of the closed-loop system. Henceforth, we shall

assume that our nominal feedback system above is stable in which case

I+ G is invertible. Then from (13) we have

e- (I+ G) u (14)

so that

y =Ge = G(I+G) u. (15)

In (15), the quantity G(s)(I + G(s)) - is called the closed-loop transfer
-1

matrix while G(jw) (I+G(jW)) is called the closed-loop frequency

response matrix. We then pose the basic stability question:

Does the nominal feedback system remain stable when subjected

to perturbations and how large can those perturbations be?

Let us observe at this point that there is nothing sacred about

linearity in the above discussion and more general nonlinear treat-

ments can be found in [4] and [5], for example. The question of "near-

ness to singularity" of (I+G), even in the nonlinear case, is naturally

intimately related to a notion of condition number for nonlinear

equations. The interested reader could readily adapt the ideas of

Rheinboldt [6] to the particular application at hand here.
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3. BASIC STABILITY RESULTS AND RELATED TOPICS

a. ADDITIVE AND MULTIPLICATIVE PERTURBATIONS

We shall consider two fundamental types of perturbations in the

basic feedback system of Fig. 1. Throughout this section, " will

denote any matrix norm with 11 Ill = 1. The first case to be considered

is the case of additive perturbations to G, pictured below:

L

u +

Fig. 2. Additive Perturbations

In other words, the nominal G is perturbed to G + L. Under the assumptions

that both the nominal closed-loop system and the perturbation L are

stable it can be seen from the Nyquist criterion and the identity

I + G + L - (I+G) [I + (I+G)- LI (16)

that the perturbed closed-loop system remains stable if

wee +Goiinh (1) < 1, i> 0 (17)

A weaker condition than (17) but one which directly exposes L is
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l J) I< > 0, (18)
(I + G(JW))-lii

The second case to be considered is that of multiplicative perturba-

tions:

u(I+ L G

Fig. 3. Multiplicative Perturbations

In this case, the nominal G is perturbed to G(I+ L). Under the assumptions

that both the nominal closed-loop system and the perturbation L are

stable it can be shown from the Nyquist criterion and the identity

I + G(I+L) (I+G) [I + (I+ G- 1 ) - L (19)

that the perturbed closed-loop system remains stable if

( j( + G-1(0))-1L(j W) II < I, W > 0 (20)

(assuming G exists). Again, a weaker condition than (20) but one

which directly exposes L is

LL (JoJ)II < 1 , 0 (21)
11(i + G - 1 (JA))
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Remark 1: As we noted in Section 1, the above inequalities are tight,

i.e., the < cannot be replaced with <

Remark 2: Where convenient we shall henceforth drop the "jW" arguments.

Remark 3: It must be stressed that the results based on

II( GI)11 I 11 < 1 (18), (21)

are weaker than those based on

II(I+G- 1 -L I < 1 (17), (20)

since

1( I + G- ) - LII < 1(I + G -) 1  11 II - (22)

For example, if L = c(I+ G ) for some constant c, jcj < 1, the

differences in the bounds are obvious. In (18), (21) we have

+1-1 t
II(I+G-*)-I II = I c'(I +G - )

while in (17), (20) we have

II(+Gl)-L11 = Idc

and it is possible to have

Icd << Ic - i(I+G t)

However, for random perturbations L, (22) is often approximately an

equality. To see this, note that a random (dense) L will almost surely

be invertible; recall Example 2. It is then easy to show that

I+ G±" )- I (Ic + u+)-l. i L l('r < u--z- IIG ., )11- II•
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Again, since L is random, it will almost surely be well-conditioned

(w.r.t. inversion) so that IILII P Hence,

1(3 + G±) -LII 11(I + G 1)-l )IIILII.

A related aspect, also worth noting, follows from the inequalities

1[(I + G+I)-I1- • IL11 < I(I+G-I )- LII < II(+G- )-II_ 1 IL .
K(I+ G -+1 )

If (I+G ± ) is reasonably well-conditioned (K(I+G ± ) near 1) , the

majorization (22) will not be a bad overestimate.

Remark 4: By our discussion in Section 1, the appropriate measure of

stability robustness is

d - rin (23)W>0 il (I+ G- (jW) -i1I

and in the sequel we shall consider methods of efficiently plotting

as a function of w. This quantity is familiar from
I(T + G)- II

classical sensitivity analysis where it is shown, in the single-input

single-output case, that the change in the output of a closed-loop

system, due to (additive) perturbations in G (scalar), is reduced by

a factor of 1 + G compared with the open-loop effect.

Remark 5: So far we have required nothing of our norm other than

II IlI - 1. Of course, a frequently occurring norm in much of the

analysis of linear systems is the spectral norm II• I2. In that case
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1 is the smallest singular value of (I+ G ). Let(I+ G' -) II
1

d (w) - (24)

We are interested in plotting d (M) versus w for large numbers of
q

w's. We shall see in the sequel that determining d () can be

somewhat more expensive to determine than, say dl(M) or d,(w). More-

over, note that

11 A 112 < I1 A I' < Am 11 A 112 (25)

and

A_ II II < 11 A IL < ,'m 11A 112 (26)

for A e Cmxm. Since we are usually most interested in order-of-magnitude

estimates of d (q), d () will lie in a strip sufficiently close to

d1(w), for example, to give the same qualitative information. The

number m which is the number of inputs/outputs in the system is typically

no more than about 10 and is frequently much less.

b. RELATIONSHIPS BETWEEN ADDITIVE AND MULTIPLICATIVE PERTURBATIONS

The following theorem relates additive and multiplicative perturba-

tions. Again, the "jwls" will be omitted for convenience and all

relations will be assumed to hold for all w > 0.
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Theorem 2: II( + G- 1 II - I(+ G) <

Proof: From the identity

(I+G - 1 ) - 1 + (I+G)-_ I (27)

we have

llII(I+G-1)-1 - 1(1+ G)-IIj < 1 ( I + G-)-1 + (I+G)-lI = lI = 1.

We now get immediately the following useful corollar,:

Corollary 1: Assuming that both the nominal closed-loop feedback

system of Fig. 1 and the perturbation L are stable then the perturbed

system is stable under:

(a) additive perturbations if

IIL II < -1-1 (28)
1 + I(I+G II

(b) multiplicative perturbations if

IL 11 < 1 (29)
1 + II(I+G)1-1

Proof.: Follows immediately from Theorem 2 noting that

1 II(I+ )-111 II¢I+ )-lli

C. SPECIAL RESULTS FOR THE SPECTRAL NORM

In this subsection we shall present some results related to those

in subsections a. and b. but specialized to the 11°112 - norm. For
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a matrix H e n with singular values a (H) > ... > a (H) > 0 we note1 > n h

that 1IHIH2 = al(H). If H is nonsingular, IH- 112 = C (H) "
m

I11 - norm (28) becomes

U (I+G )
aI (L) <m1 + CT (I+ G- I

m

while (29) becomes

a (I+G)m
1 l  < 1 + (I+G)

m

We shall make great use in the sequel of the following result

of Fan [71.

Theorem 3: Let A,B e C Then

(a) a (A+B) < G,(A) + .(B); i > 1, j > 1
i+j-l I 1

(b) a ij1(AB) < a.i(A)a.Y(B); i >1 j >1

Part (b) of Theorem 3 can be used to relate a (I+G) and a (I+G-).m m

Theorem 4: (a) 0 (I+G - ) < a (I+G) < JIG m(I+G -

, - Il 2 a Im - - m 12

(b) a O (I+G) < a (I+G - 1 ) < hG 1 11 a (I+G)11 G 112 m -- m -- m

Proof: Follows immediately from Theorem 3 using

I + G- G- (I + G) and I + G F G(I + G- 1 )
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For the rest of this subsection we shall let H denote either
-1

I + G or I + G according to whether additive or multiplicative

perturbations are appropriate. The next theorem will show how the

singular values of H + L can be bounded in terms of Ii L 112 and the

singular values of H.

Theorem 5: Suppose a k(H) > k > 0 for some k, 1 < k < m, and

JILI6 < 0. Suppose further that B < ak. Then:

(a) ok(I + H- L) > 1 -

a'k

(b) ak (H + L) > 0 k -8.

(Note: If k 0 m, H + L is not necessarily invertible if i is too large.)

Proof: (a) Use I E I + H-L - HIL and A - I + H L, B -H L, i k,

J = m-k + I in Theorem 3(a) to get

aM(I) < ak(I + H L) + a Mk+l(H L)

Thus ak(I + H- L) > 1 a m-k+l(H 1L)

>x - I Cm-k+l (H-1 ) by Theorem 3(b)

= 1 - IL IIak (H)

(b) Use H - H + L -L and A = H+ L, B - -L, i -k, J 1

in Theorem 3(a) to get

ak (H + L) k(H) - 11 "2 _k -112 Crk > a



-21-

The case k = m is of special interest in Theorem 5 as it bears

directly on our two basic inequalities (18) and (21) of the form

I 1 < - 1

which are sufficient to guarantee stability of a perturbed closed-loop

system. Specifically, if II H-111 _ < and IL II < $ with 0 < < a,

then H+ L is invertible and II(H+ L)- 111 < ai1 or am(H+ L) > ( -

Note that Theorem 5 was expressed in terms of isolating I L I12 . By

analogy with the inequalities (17) and (20) we can also have the fol-

lowing stronger, but perhaps less useful, theorem.

Theorem 6: Suppose -k+l(H - I L) < 1 - 6 where 0 < 6< 1 and 1 < k < m.

Then:

(a) ak (I + H-L) >

(b) k(H + L) >
- JH 1112

Proof: (a) From the proof of Theorem 5 we have

ak (I+H L) > a -k+ I (H L) >

(b) From I + H 1L - H- (H+ L) and Theorem 3(b) we have

ak (I + H-1 L) < ak (H + L) 11 1 2Il

whence a k (H+ L) -II -I 2

k ~ lH~ 11

_____________________________
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d. SPECIAL RESULTS WHEN G(s) - c(si- A) B

in this subsection we shall make use of the fact that the frequency

response matrix is of the form

G(j&) -C(Jci0I - A)- B

Let us further define

F(jW) - C(JcWI - A + BC)- B (30)

Recall the Sherman-morrison-Woodbury formula:

-1l -- -1 -l -l -1 -1
(W+ xYZ) w -w X(Y + ZW x) Zvi

assuming the indicated inverses exist. Then it is easy to verify that

-l(I + G(JQw)) =I - F(jw) (31)

and, from (27),

-1 -
(I + G (jc W) F (jw) (32)

Thus our results in the last section (for example, Theorems 4, 5,

and 6) can all be cast in terms of F by noting that

ak(I + G) - 1 -(33)
amk+l (I-F)

and

a k (I+ G-1 ) 1 (F) (34)
m-k+l

Moreoer,

- III- F~(35)
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and

1(I + G-)-111 - IIF 11 (36)

for any of the norms we have been considering (in particular, k - m in

(33) and (34)). Use of (31) and (32) results in an apparent savings

in the number of linear systems to be solved (i.e., number of inversions)

and we shall exploit this fact in the next section.

4

I
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4. COMPUTATIONAL PROBLEMS

a. COMPUTATION OF FREQUENCY RESPONSE MATRICES

As we have seen above, an object of considerable interest in studying

the robustness of stability of linear systems is a graph of
(I + G(j))

as a function of w. When G(jw) = C(jWI - A)-I B we saw that jj(I + G(j&J))-l-

III-F(jw)lI and II(I+G-I(jw))-Ill = If(jw)ii where F(jW) = C(jWI - A + BC)-IB.

Thus, regardless of the norm used, a quantity of the form

C(J WI - H) -B (37)

must first be computed. We shall assume throughout this and the next sub-

section that: (i) B em n n , C e mxn, H e 3Rn x n are given

(ii) n > m

(iii) (37) is to be evaluated for a large number, N, of

values of W; typically N >> n.

Rather than concentrate on exact operation counts, which may be fairly

meaningless anyway, we shall give only order-of-magnitude estimates.

It will be seen that the bulk of the computational load rests on evalu-

ating matrices of the form (37) and so we shall focus initially on

that problem.

nxn
If A eR is dense, the most efficient evaluation of C(jQI - A) B

by an LU factorization of A, solution of m triangular systems to get

(jWI - A)- B, and finally a matrix multiplication, requires approximately

1 3 1 2 2

in + 2mn + m n multiplications (and a like number of additions; we

shall henceforth count only multiplications). This figure, when multiplied

by N, represents a rather large amount of computation.
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If A is initially transformed, however, the computational burden

can be reduced quite considerably. If T is a similarity transformation

on A we have

C(jcI - A)-IB F CT'jw3 - T- AT) -T-1 B

Let us define

H - T-1 UT

and agree, for convenience to still label CT, T- B the transformed C and

B matrices, respectively, as C, B respectively. We now have the problem

of evaluating

C(j I1 - H) B

where H may now be in such a form that (jcaI- H)- I can be computed in

3less than O(n ) operations. For example, A can always be reduced to

5 3upper Hessenberg form by (stabilized) elementary transformations (T n

5 3multiplications) or by orthogonal transformations (- n multiplications).

These transformations are very stable numerically and, while O(n 3), are

performed only once at the beginning of the calculations. The resulting

linear system to be solved - for N different values of W - now has an

upper Hessenberg coefficient matrix and can be solved in approximately

1 2
mn multiplications. Moreover, Hessenberg systems can be solved very

accurately with the growth factor in Gaussian elimination bounded above

by n; see []. Computing C(jwI - H)- B still requires an additional

m 2 n multiplications. Neglecting the initial transformation and deter-

mination of CT and T- B, the Hessenberg method requires approximately

I
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1 2 2
2 mw + m n multiplications (for each value of c), a considerable savings

over the O(n 3 ) algorithm if n >> m.

Of course, other transformations T are possible. One possibility is

to reduce A to upper triangular (Schur) form by means of orthogonal simi-

larities. This is considerably more expensive than reduction to upper

Hessenberg but, again, need only be done once at the beginning. How-

ever, the resulting linear system to be solved at each step is upper

triangular and so still requires O(mn 2) multiplications. Because of

potential difficulties with multiple eigenvalues of A there seems to be

little real advantage gained by this procedure. Substantial savings

could be gained though if the elgenstructure of A were such that it

was diagonalizable by a reliably computable T. Since this involves

consideration of the essentially open numerical problems associated with

computing invariant subspaces we shall not pursue the details here.

But assuming such a transformation were possible, C(jWI - D) -B with

D diagonal, could be computed with approximately mn + m 2n multiplications

for each value of w. Attractive as this appears, the potential for severe

ill-conditioning of the eigenproblem associated with A render this latter

method unreliable as a general-purpose approach. We shall subsequently

consider only the Hessenberg method.

The analysis above has been done under the assumption that complex

i arithmetic was performed. we now outline how G - C(JAI - H)7IB might

be determined using only real arithmetic. The matrix H is assumed to

be in upper Hessenberg form. We wish to solve first

Cjwl - H)Z = (38)



-27- j
Then

G CZ

Suppose Z = X + jY where X, Y e [ . Upon equating real and imaginary

parts in (38) we get the following order 2n real system to determine

X and Y:

= (39)
I -H

Thus X - 1 HY and Y - -(W21 + H 2) -B. The matrix (21 + H2 ) will be

invertible if (JwI - H) is invertible. Note that (c2 I + H2 ) is no longer

upper Hessenberg but is almost in the sense of having two rather than one

nonzero subdiagotl. Its shape is wholly typified for n = 5 by the

matrix

X x X x X

X 
X 

X 

X

XXI

0 x x x x

0 x x xx

Linear systems involving matrices of this type can be solved using
2

approximately n multiplications. We sumnmarize the Hessenberg method

using real arithmetic:

(i) Reduce A to upper Hessenberg form H, transform B and C,

and compute H ; this step is done only once.

OF - I.
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(ii) Solve (w 21 + P 1 = -B for Y.

(iii) Cempute X - 1-HY

(iv) Compute G - (CX) + J (CY)

2Step (ii) requires approximately mn multiplications, step (iii) requires

1 2 2
approximately - mn , and step ',ii) approximately m n. The total number

of multiplications is approximately mn2 + m2 n.

Storage requirements for the Hessenberg method with real arithmetic

are approximately double those for complex arithmetic.

b. CCPUTATION OF ROBUSTNESS MEASURES

We have seen above that quantities of the form (37) can be reliably

evaluated in O(mn 2) operations. There then remains the problem of

determining (35) or (36).

Case 1: I- 112

For (35), the singular value decomposition (SVD) of I + G(jW) can

be computed for each value of w. Each SVD typically requires approximately

6m3 multiplications. The smallest singular value is then the quantity of

interest. Por (36), inversion of G can be avoided by finding the SVD

of F(j& ), again in approximately 6m3 multiplications. The inverse of

the largest singular value of F is then the quantity of interest.

Case 2: II" 1  or 1

Use of either of these norms in (35) or (36) involves negligible

computation as compared to Case 1, namely about m2 additions and absolute
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values and m-i arithmetic comparisons.

In both cases, the additional work required is usually small compared

with O(mn 2) especially if n >> m. However, if m is large relative to

n, significant savings can be realized in using 11- II1or 1IIL rather than

II" iIn fact, using our previous approximate operation counts for

the Hessenberg method and setting n = kin, we have

work per value of w using 1I ~ k2 + 2k + 12

work per value of w using I IIl or I" IL k + 2k

2
Not thughtha P k + 2k + 24Note though that p k 2 + 2 if singular directions are also com-k2 + 2k

puted.

In the event A (or A - BC) can be successfully diagonalized as

mentioned in Section 4.a. the potential savings in avoiding 11 112 are

somewhat greater. In fact, we then have

k+6

k+12
(or p r- if singular directions are also computed).

The above comparisons are only approximate and should in no way

be construed as definitive statements. The purpose of this section is

to merely introduce certain aspects of the numerical computations and

suggest further avenues of exploration. A great deal of numerical

experimentation remains to be done. Reliable software such as LINPACK

E9] for linear systems will be of great benefit in this research.

______________j'
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5. CONCLUSIONS

We began this paper with an attempt at a "formal" definition of

robustness. We then applied the definition to the problem of robustness

of stability of linear systems as discussed in (1]. The cases of both

additive and multiplicative perturbations were discussed and a niunber of

relationships between the two cases were given. Finally, a numjber of

computational aspects of the theory were discussed including a proposed

new method for evaluating general transfer or frequency response matrices.

The new method is numerically stable and efficient, requiring only

2
O(mn ) operations to update for new values of the frequency parameter

rather than O(n 3 )

A number of interesting research areas suggest themselves in this

work. one such area is that of constrained perturbations. For example,

in our basic problem we were concerned with the nearness to singularity

of a nonsingular matrix A e cnxn. If the admissible perturbations E

are somehow constrained for one reason or another, for example E upper

triangular, the usual bound on 11 Ell for which A + E is singular but E

is "dense" may be overly pessimistic. Related to this is the fact that

our bounds were derived for the "worst case". The size of perturbations

allowed in a linear system to ensure continued closed-loop stability may

very well be larger than we have derived if inputs to the system are

constrained in certain directions.

We have concentrated in this paper on the analysis of linear control

systems. There are many interesting -and difficult -synthesis problems,

however. For example, can A, B, C be chosen to assign certain singular

values of I'+ G-? What is the effect of changes in B or C on the
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behavior of I + G ? Can a -atrix K be determined so that I + (GK)

has certain singular values?

On the computational side, more research needs to be done on updating

parametric problems. That is, suppose we have a matrix (say, G(j))

which depends "in a rank m way" on a parameter w. When w changes how

can various quantities be updated efficiently?

Finally, as mentioned in Section 4.b., a great deal of numerical

experimentation is necessary to get a qualitative feel for the numbers

in determining robustness measures.
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